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Finite Difference Analysis of 2-D Photonic Crystals

Hung Yu David Yang, Senior Member, IEEE

Abstract— In this paper, a finite difference method is de-
veloped to analyze the guided-wave properties of a class of
two-dimensional photonic crystals (irregular dielectric rods). An
efficient numerical scheme is developed to deal with the de-
terministic equations resulting from a set of finite difference
equations for inhomogeneous periodic structures. Photonic band
structures within an irreducible Brillouin zone are investigated
for both in-plane and out-of-plane propagation. For out-of-plane
propagation, the guided waves are hybrid modes; while for
in-plane propagation, the guided waves are either TE or TM
modes, and there exist photonic bandgaps within which wave
propagation is prohibited. Photonic bandgap maps for squares,
veins, and crosses are investigated to determine the effects of the
filling factor, the dielectric contrast, and lattice constants, on the
band-gap width and location. Possible applications of photonic
bandgap materials are discussed.

I. INTRODUCTION

N RECENT YEARS, there has been growing research
activities related to the development of artificial electrical
or optical materials. By tailoring the material electrical char-
acteristics, one is able to control the flow of electromagnetic
waves from microwave to optical frequencies. Wave propa-
gation in periodic structures has been an important subject in
microwaves and optics for many decades. Artificial dielectrics
composed of infinite arrays of periodic conductors have been
proposed for microwave lens applications [1]. Periodically
loaded waveguides have found applications in a variety of
devices such as traveling-wave tubes, filter networks, and
surface waveguiding devices [2]. Planar printed metallic el-
ements periodically distributed over the surface of a dielectric
layer has been used in frequency selective surfaces [3] and
integrated phased array antennas [4]. Light interaction with
dust and rain drops and X-ray diffraction from crystals are
examples of wave interaction with randomly distributed peri-
odic structures [5]. A common feature of periodic structures is
the existence of frequency bands where electromagnetic waves
are highly attenuating and do not propagate. In analogy to
an electrical crystal where periodic atoms or molecules may
present a bandgap prohibiting electron propagation, a photonic
crystal is made of macroscopic dielectrics periodically placed
(or embedded) within surrounding media. The periodic nature
of the structure may introduce photonic bandgap (PBG) within
which photons (waves) are forbidden in certain directions.
Artificial materials made of periodic dielectrics exhibiting
a complete photonic bandgap (PBG) have been proposed to
prevent spontaneous emission in semiconductor lasers and
heterojunction bipolar transistors [7]. There is tremendous
potential in various electronic and optical applications. The
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consensus is that optical and electromagnetic technologies
may benefit from photonic crystals in a similar way electronic
technology benefits from semiconductors. .

Electromagnetic modeling plays an important role in the
design and applications of artificial materials. Field analysis
and simulation are indispensable for material and component
development. Electromagnetic wave theory and computational
techniques are necessary to determine the fundamental physi-
cal principles of material properties and the design of devices
and components from microwave to optical frequencies. A
plane-wave-expansion method has been extensively used for
the analysis of two-dimensional (2-D) and three-dimensional
(3-D) photonic bandgap materials [8]-[9]. In this method, the
eigenvalues (frequencies) and eigenvectors (magnetic fields)
are found iteratively from a large dense matrix (matrix dimen-
sion 18 twice of the number of plane wave terms).

In this paper, an efficient finite difference method is de-
veloped for the photonic band structures of a class of 2-
D photonic crystals. There are several advantages of the
finite difference method over the plane wave methods. The
characteristic matrix in the finite difference method is sparse
(quasi-band diagonal) and only nonzero elements need to be
stored. An efficient numerical scheme with direct QR proce-
dures utilizing the matrix sparsity is developed to reduce the
computation time significantly. In addition, all the eigenvalues
can be found from a direct root search routine (bisection
method) avoiding the initial guess for each eigenvector needed
in the iterative methods. The finite difference method is
appropriate for computer aided design of the photonic crystals.
A limitation of finite difference method is that the crystal
“atoms” are particularly suitable for irregular, but not curved
shapes.

The photonic crystal structure can be made with con-
ventional machine tools in the centimeter range and with
micromachining techniques in the micron range. For 2-D
photonic crystals, the in-plane propagation is of particular
interest due to the existence of a photonic bandgap where wave
propagation is prohibited in all directions. For some applica-
tions, we need to understand the guided-wave characteristics in
an arbitrary direction. The analysis for both in-plane and out-
of-plane propagation ate considered in this paper. The finite
difference results are compared in special cases with those
with an integral-equation method and a plane-wave-expansion
method to confirm the validity of the presented results.

II. FINITE DIFFERENCE ANALYSIS
OF 2-D PERIODIC STRUCTURES

For 2-D photonic crystals, the geometry is uniform along
the longitudinal (2) direction and periodic in the transverse
(in-plane) directions with lattice constants a and b. The cross
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Fig. 1.” Cross section of a two dimensional photonic crystal: Periodic arrays

of dielectric rods in a homogeneous dielectric medium.

section of a general two-dimensional photonic crystal is shown
in Fig. 1. The geometry is somewhat similar to periodic arrays
of dielectric waveguides.

A finite difference method for periodic structures is used for
the computation of the propagation constant of guided wave
propagating in an arbitrary direction. For hybrid mode analysis
of waveguide structures (out-of-plane propagation), we use
Helmholtz equations with two field components. In finite
element or finite difference method, an H-field formulation
is more preferable due to the fact that magnetic field is
continuous. In this analysis, the H, and H, formulation is
employed to avoid possible spurious-mode problems [10],
although any of the two magnetic-field components can be
used. The Helmholtz equations of the pertinent problem are

o?uy)  HY :
gt g T -BE =0 W)
and
aZH(i) 82H(i) )
G g T H =D =0

where 3, is the phase constant in the 2 direction, k; = ko+/&;
with kg the free-space wave number, and ¢; is the dielectric
constant in region 3. In finite difference method, the unit cell
0 <z <agand 0 <y < bis divided into many rectangular
grids. A unit cell for periodic dielectric crosses with the finite
difference mesh is illustrated in Fig. 2. The common point
of four adjacent grids is a central node where H, and H, are
related to those of the adjacent nodes through a five-point finite
difference equation. Five-point finite difference equations of
the transverse magnetic fields for four connected grids with
different dielectric constants have been derived in {10], and the
results are shown in the Appendix. For the periodic structures,
if there are M + 1 nodes in each side of a unit cell, there are
2M? finite difference equations with 242 unknowns. For the
central nodes at the boundary, some of the adjacent nodes are

out of the unit cell and can be brought back into the unit cell
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a

Fig. 2. A unit cell of periodic dielectric crosses and finite difference meshes.

through the periodic boundary conditions,
O(z + a,y +b) = eI (g, y). (3)

Here ®(z,y) is any field component, 3, and 5, and are the
phase constants in the & and ¢ directions, respectively. Also,

. due to the periodic property, the nodes at only two of the four

cell boundaries are included in the matrix equations. The 20>
finite difference equations are a set of linear homogeneous
equations, which can be written in a matrix form as

{ar- (&) n}im =». @

[H] is a column matrix, where the elements are the transverse
magnetic fields at the central nodes. [I] is the identity matrix.
[4] is the characteristic matrix and is a function of the phase
constants and the geometric and material parameters. The
eigenvalues (w/c)? are the square of the free-space wave
number. There are 2M? eigenvalues in (4). For the photonic
band structure of interest, we need to find the first few
eigenvalues (usually the first six). The e¢igenvalue equation is
obtained by setting the matrix determinant to zero. The roots
of the eigenvalue equation are the frequencies, for a given set
of the phase constants.

In numerical implementation, direct approach using Gauss-
ian elimination to find the matrix determinant is not practical.
The bisection method of root searching (zeros of the matrix
determinant) often requires many iterations, especially for
photonic band structures. For a unit cell with 400 grids
(20 divisions in each direction), the matrix dimension would
be 800. The required computer memory and time for root
searching would be enormous. A careful examination of the
characteristic matrix [A] shows that most of the matrix el-
ements are zero. This is not surprising, since each row is
obtained from a five-point finite difference equation and has at
most nine nonzero elements. The distribution of zeros within
the matrix [A] is shown in Fig. 3(a). All the nonzero elements
are within the gray area. In finite difference method for a
bounded region, the matrix is completely band-diagonal. There
are available standard software packages such as EISPACK
[11] to find the eigenvalues of such a banded matrix. For the
pertinent periodic problem, It is seen that the matrix is band-
diagonal except some nonzeros at the end of the first few
rows and columns (quasi-band-diagonal). Those nonzeros off
the diagonal band are due to the central nodes at the boundary
of a unit cell. The existing software packages do not facilitate
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(b)

Fig. 3. Quasi-banded matrix due to a 2-D finite difference analysis of 2-D
periodic structures. Note that nonzero elements are in the gray area.

efficient evaluation of eigenvalues for such a quasi-banded
matrix. In this work, a numerical scheme is developed for
such a quasi-banded matrix.

For the convenience of discussion, we assume that there are
M + 1 nodes on each side of a unit cell, and there are 2M2
finite difference equations. The purpose of the algorithm is
to evaluate the determinant of the eigenvalue matrix in (4).
It can be shown that the maximum dimension for a square
submatrix within the gray strip in Fig. 3(a) is 2(M + 1). For
the moment, we assume that all the off-band diagonal terms
are all zero so that we are dealing with a banded matrix. In
this case we would need to deal with a square matrix with
dimension 2(M + 1), not the entire matrix. In order to show
how this works, we start from the square submatrix at the very
left of the gray strip in Fig. 3(a). In a QR procedure, we apply
Gaussian elimination 2M + 1 times to obtain the first diagonal
term of the final tri-diagonal matrix (the multiplication of all
diagonal terms is the determinant we are looking for), and
we then eliminate the first row and column. The important
feature of this procedure is that all the operations are within
the gray strip and the resulting one-dimension-less matrix is
still banded. We may repeat this procedure until only the last
(the one at the very right side) square submatrix is left. We
then use a standard QR procedure to find the determinant of
this last submatrix. The advantage of this approach is that all
the matrices involved are with a dimension 2(M + 1) instead
of 2M2, and Gaussian elimination is for elements within the
band. This approach reduces the computer time and memory
tremendously (about the square root of the computer time with
the direct QR procedure). We will extend this algorithm to deal
with the quasi-band-diagonal matrix shown in Fig. 3(a).

It can be shown that the submatrices off the diagonal band
in Fig. 3(a) are square matrices with a dimension 2M. In
order to deal with these submatrices, we divide the matrix
in Fig. 3(a) into several subregions as shown in Fig. 3(b). It
is interesting to see that if we exclude the four submatrices
in the four corners, the rest of the whole matrix is band-
diagonal. It is even more interesting to note that if we
apply Gaussian elimination to the band-diagonal part, the four
excluded submatrices are unaffected. If we begin the row and
column elimination, the band-diagonal part of the matrix starts
to shrink until the four excluded submatrices merge into one
matrix with dimension 4. The determinant of the remaining
matrix is solved by a standard QR procedure.

The proposed numerical scheme utilizing the matrix sparsity
reduces significantly the computer time and memory compared
to a direct approach. For a typical case of a square unit cell
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TABLE 1
No. of Nodes (M x N) | First Mode §/ko | Second Mode 3/ko
36 (M =N =6) 2.5977 2.3173
121 (M = N = 11) 2.5438 2.3204
256 (M = N =16) 2.5258 2.3292
441 (M =N-= 21) 2.5172 2.3345
TABLE I
No. of Nodes (M x N) | First Mode 8/kq | Second Mode 8/kq
36 (M = N =6) 1.8813 1.8528
100 (M = N = 10) 1.9375 - 1.9073
196 (M = N = 14) 1.9516 1.9204
324 (M =N= 18) 1.9568 1.9249
428 (M = N = 22) 1.9591 1.9268

with 400 grids, the proposed scheme involves with a matrix
with dimension 80 instead of 800. This results in reducing
computer memory by a factor of 100. The computer time
reduction is more than 100 times. :

The discussion so far is for general out-of-plane propaga-
tion, where the waves are hybrid. For in-plane propagation
(8, = 0), the guided waves are either TE or TM (to z) modes.
For TE modes, only H,, £, and E, components exist. For
TM modes, only E, H,, and H, components exist. Five-point
finite difference equations for TE and TM modes ate in terms
of H, and F,, respectively. These two equations are shown
in the Appendix. For in-plane propagation, the characteristic
matrix is in the same form as shown in Fig. 3(a). However, the
number of equations and unknowns are half of the those for
out-of-plane propagation. The numerical algorithms for both
cases are the same.

III. RESULTS AND DISCUSSIONS

The finite difference method can deal with a variety of
rrregular photonic crystal structures. The cross section of unit
cells of several photonic crystals investigated in this paper
is shown in Fig. 4. Convergence tests are performed for two
cases shown in Tables I and II. Both cases are for out-of-
plane propagation. The first case is for air crosses within a
dielectric medium. The second case is for air squares within a
dielectric medium. It is seen that the results are convergent as
the number of grids within a unit cell increases. Generally, 400
grids provide excellent convergent results. Computer time in
a PC for the 400 grid case in Table I is about 100 seconds for
each data. For in-plane propagation, computer time is about
20 seconds instead.

The validity of the finite difference results is checked by
comparing with the results from an integral equation method
[12]. This comparison is for the case of periodic square
dielectric waveguides surrounded by air and the propagation is
in the z direction (out-of-plane). The results of the comparison
are shown in Fig. 5. The plot is for phase-constant versus
the ratio of square-width to lattice-constant. The compari-
son shows excellent agreement. The finite difference results
for in-plane propagation are compared with the plane-wave-
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Fig. 4. Cross section of unit cells of four types of 2-D photonic crystals.

expansion method [8]. The results of the comparison are shown
in Fig. 6. The comparison is for the case of air squares in a
dielectric medium (or dielectric veins in Fig. 4(b) when the
size of the square is close to a unit cell). The plot is for the
photonic band structure of TE modes. Excellent agreement is
found between the two methods. The horizontal axis in Fig. 6
is for the phase constants of guided wave modes in various
directions. Due to symmetric and periodic properties, only the
shaded region in the Brillouin zone (the wave number space
or the reciprocal lattice) is irreducible. For example, the phase
constants in the £, §j, —Z, and —§ direction propagation are all
the same. Also, the maximum phase constant in the & direction
within the Brillouin zone is 7 /a. The fact that there exists a
photonic bandgap where wave propagation is prohibited in all
directions is of particular interest. Within the bandgap region,
the modes become pairs of complex modes that do not carry
power. Similar complex modes have been found in dielectric
loaded waveguides [13].

Photonic band structures for periodic dielectric squares are
shown in Fig. 7 for both TE and TM modes. It is seen from
Fig. 7 that there exists a wide band photonic gap for T™M
waves (but not for TE waves). Generally, there may exist only
TM photonic bandgaps for dielectric squares embedded within
_a lower dielectric material. In contrast, dielectric squares
surrounded by a higher dielectric (dielectric veins) may have
a wide bandgap for TE waves. It is found that TM photonic
bandgap may also exist for dielectric veins, but the bandgap
is usually narrow. A general observation is that with a proper
filling factor, low dielectric materials with physically isolated
high-dielectric implants show a wide TM bandgap; while low
dielectric materials with connected, slim, and higher-dielectric
implants show a wide TE bandgap.

Photonic band structures of slim dielectric crosses for both
TE and TM modes are shown in Fig. 8. Note that if the arms
of the crosses extend to the entire lattice [see Fig. 4(c)], the
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structure becomes a dielectric vein structure [see Fig. 4(b)].
Basically, we can treat the periodic cross structure as a periodic
broken vein structure, which tends to have a TE photonic
bandgap. On the other hand, dielectric crosses are isolated
implants, which tend to have a TM bandgap. Therefore,
there should exist both TE and TM bandgaps as are indeed
observed in Fig. 8. Generally, the TE bandgap occurs at higher
frequencies than the TM bandgap. The length of the cross arm
may be used to adjust the bandgap width.

The photonic band structures of air crosses within a di-
electric medium for both TE and TM modes are shown in
Fig. 9. The cross arms for this case are relatively wide (see



2692

——— TM modes
- - - - TE modes r X

0.8

0.6

0.4

Normalized Frequency wa/(2nc)

0.2

Corn s Dvv gty e v paaa gl erraaaa it

} |
|

0.0 : ——
r ﬁ”(ﬂ!/:O) X ﬁy(ﬂz=7r/a) M ;Bzzﬂ!l r

Fig. 7. The photonic band structure for the first few modes of dielectric
squares £~ = 8.9 surrounded by air. The square length is 0.3545a. The
horizontal axis is for wave numbers in different directions. I', X, M are
symmetric points in Brillouin zone shown in the inset.

0.7 N
] //" ™o
] - N l
ks N 7/’
i SN AN -z
cs 0.6—_ N N 5§/
& . N b
N ] TE BAND GAP'
[53 -
g 0.4
g ]
i=3 -
E -
k‘ n
2 ] g
N 0.3 A -
T‘“ N 7
g . 7
3 ] /
z i /
0.1 | ,/ b ;
] / \——— TM modes
17 « - - - TE modes
1. |
0.0 ’ l

I B(8,=0) X Byfs=n/a) M ﬂ,;ﬁy T

Fig. 8. The photonic band structure for the first few modes of dielectric
crosses. Dielectrics €,=8.9 is surrounded by air. 1 = t2 = d; = do
= 0.3445q and t2 = da = 0.181a.

Fig. 4(d)), and the geometry is equivalently a dielectric vein
structure with additional dielectric at the junctions of the veins.
The dielectric addition may be used to control the TE and TM
bandgap width. Its effect is to increase the TM bandgap width
and reduce the TE bandgap width. In the extreme case when
the air crosses are slim, both TE and TM bandgaps vanish.
The frequencies and band width of photonic bandgap in
2-D photonic crystals are determined by the crystal geom-
etry, lattice constant, the filling factor, and the dielectric
contrast. For a given implant shape, the filling factor and the
dielectric constant ratio determine the photonic band character-
istics, Other parameters are scalable. Photonic bandgap maps
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(bandgap zones versus filling factor) for dielectric square and
vein structures, which are useful for the design, are shown
in Fig. 10. The dielectric constant of the material is 11 and
the surrounding medium is air. For TM modes of dielectric
squares, it is observed that the bandgap exists when the
filling factor (¢/b)? is in between 0.03 to 0.55. The boundary
frequencies of the gap decrease as the filling factor increases,
and the widest bandgap occurs when the filling factor is about
0.1. A TE bandgap is not found for the dielectric squares

.within air. It is observed from Fig. 10 that the TE and TM

bandgap may both exist for dielectric veins in the air. The TE
bandgap exists for a wide range of filling factor, from 0.25
to 0.86. The widest bandgap occurs when the filling factor is
about 0.7 and the boundary frequencies of the gap increase
as the filling factor increases. The corresponding TM bandgap
occurs at much smaller range of filling factor (0.6 to 0.85),
and the bandwidth is much smaller.

The bandgap maps for symmetric dielectric crosses in air
are shown in Fig. 11. The structure can be treated as broken
dielectric veins. The bandgap frequencies are plot against the
air gap length (air gap length is 2z). When the air gap is
zero and the veins are all connected, we observe a wide TE
bandgap and no TM bandgap (see Fig. 6). When the veins are
broken with air gap and the air gap increases, the TE bandgap
quickly decreases to zero and TM bandgap width starts to
increase (all the crosses become isolated). It has been found
that circular air columns in a triangle lattice exhibit TE and
TM bandgap overlap [8]. A similar observation is not found
for rectangular air columns in a triangle lattice or any other
structures presented in this paper.

For practical purposes, we need to understand the wave
propagation in an arbitrary direction (8, # 0, out-of-plane
propagation). An example of the band structure for the oblique
direction of propagation is shown in Fig. 12 for crystals with
square dielectrics. Note that, due to the homogeniety, there is
no photonic bandgap in the logitudinal direction. The geometry
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of the structure is identical to that in Fig. 7. For out-of-plane
propagation, the z-direction phase constant is assumed as 1/a.
An interesting observation is found from the comparison of
these two Figures. For out-of-plane propagation, all the modes
are hybrid and no bandgap is observed. It is seen from Fig. 12
that there exists transverse mode cutoff. This is no surprise
since the frequency is related to the specified longitudinal
phase constant. Also, if we specify the longitudinal wave
number, equivalently, we are dealing with higher-order modes
of parallel metal plates containing photonic crystals, where
cutoff frequency exists for higher-order modes. A general
observation for the modes with out-of-plane propagation is
that the increase in (3, results in a percentage increase of
the field intensity within the high dielectric region, and the
mode curves are closer together (more crowded). Larger 3,
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corresponds to less mutual coupling between implants. In the
limiting case of very large §,, we expect that all the modes
in Fig. 7 will be merging together (mode curves are flat),
a result of large energy density within the high dielectric
region. The frequency of all the modes in this limiting case
is approximately w = ¢f3,/,/e,. The photonic band structure
for out-of-plane modes is also of importance in the design of
modeless photonic-crystal parallel-plate guides. This research
is ongoing and will be presented in the near future.

IV. CONCLUSION

In this paper, we presented finite difference analysis for a
class of 2-D photonic crystals. A numerically efficient scheme,
which utilizes the quasi-band diagonal property of the charac-
teristic matrix, was developed to reduce significantly computer
time and memory for finding eigenvalues of large sparse
matrices. Photonic band structures for dielectric squares, veins,
and crosses as well as air crosses are investigated with
emphasis on finding the photonic bandgaps, where - in-plane
propagation is prohibited in all directions. Such photonic
bandgap materials have many engineering applications, such
as for optical shields, photonic waveguides, high-Q resonators,
laser emission, and protection, etc.. We concluded that with
a proper filling factor, low dielectric materials with isolated
high-dielectric implants show a wide TM bandgap; while low
dielectric materials with connected, slim, and higher-dielectric
implants show a wide TE bandgap. We also investigated the
photonic band characteristics for out-of-plane propagation. We
concluded that the larger the longitudinal wavenumber (3.)
is, the flatter and closer the photonic bands are. This is due to
the fact that energy is most confined within the high dielectric
region for large 3., and the coupling between implants is weak.
The presented finite difference analysis would also be useful
for the design of modeless parallel-plate guides, photonic
cavity, and waveguide. The research is ongoing.
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APPENDIX

Finite difference equations for fields at a central node &
joined by four grids each with different dielectrics are shown
in this appendix. The grids used for deriving finite dif-
ference representation of fields is shown in Fig. 13. The & i £
s

WOo—w

finite difference equations are obtained by descretizing the
Helmholtz equation in the homogeneous subregions and field
matching at the central node. The results for hybrid modes
(H formulation of out-of-plane propagation) and TE and
TM modes (in-plane propagation) are shown in the follow-

Fig. 13.

A mesh with a five-point finite difference representation.
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